CVE-2025-46722

Source
https://nvd.nist.gov/vuln/detail/CVE-2025-46722
Import Source
https://storage.googleapis.com/osv-test-cve-osv-conversion/osv-output/CVE-2025-46722.json
JSON Data
https://api.test.osv.dev/v1/vulns/CVE-2025-46722
Aliases
Published
2025-05-29T17:15:21Z
Modified
2025-05-30T21:05:45.735140Z
Summary
[none]
Details

vLLM is an inference and serving engine for large language models (LLMs). In versions starting from 0.7.0 to before 0.9.0, in the file vllm/multimodal/hasher.py, the MultiModalHasher class has a security and data integrity issue in its image hashing method. Currently, it serializes PIL.Image.Image objects using only obj.tobytes(), which returns only the raw pixel data, without including metadata such as the image’s shape (width, height, mode). As a result, two images of different sizes (e.g., 30x100 and 100x30) with the same pixel byte sequence could generate the same hash value. This may lead to hash collisions, incorrect cache hits, and even data leakage or security risks. This issue has been patched in version 0.9.0.

References

Affected packages

Git / github.com/vllm-project/vllm

Affected ranges

Type
GIT
Repo
https://github.com/vllm-project/vllm
Events
Introduced
0 Unknown introduced commit / All previous commits are affected
Fixed

Affected versions

Other

submission

v0.*

v0.1.0
v0.1.1
v0.1.2
v0.1.3
v0.1.4
v0.1.5
v0.1.6
v0.1.7
v0.2.0
v0.2.1
v0.2.2
v0.2.3
v0.2.4
v0.2.5
v0.2.6
v0.2.7
v0.3.0
v0.3.1
v0.3.2
v0.3.3
v0.4.0
v0.4.0.post1
v0.4.1
v0.4.2
v0.4.3
v0.5.0
v0.5.0.post1
v0.5.1
v0.5.2
v0.5.3
v0.5.3.post1
v0.5.4
v0.5.5
v0.6.0
v0.6.1
v0.6.1.post1
v0.6.1.post2
v0.6.2
v0.6.3
v0.6.3.post1
v0.6.4
v0.6.4.post1
v0.6.5
v0.6.6
v0.6.6.post1
v0.7.0
v0.7.1
v0.7.2
v0.7.3
v0.8.0rc1
v0.8.0rc2
v0.8.1
v0.8.2
v0.8.3rc1
v0.8.4