TensorFlow is an end-to-end open source platform for machine learning. The implementation of tf.raw_ops.MaxPool3DGradGrad
is vulnerable to a heap buffer overflow. The implementation(https://github.com/tensorflow/tensorflow/blob/596c05a159b6fbb9e39ca10b3f7753b7244fa1e9/tensorflow/core/kernels/poolingops3d.cc#L694-L696) does not check that the initialization of Pool3dParameters
completes successfully. Since the constructor(https://github.com/tensorflow/tensorflow/blob/596c05a159b6fbb9e39ca10b3f7753b7244fa1e9/tensorflow/core/kernels/poolingops3d.cc#L48-L88) uses OP_REQUIRES
to validate conditions, the first assertion that fails interrupts the initialization of params
, making it contain invalid data. In turn, this might cause a heap buffer overflow, depending on default initialized values. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
{ "cpes": [ "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*" ], "severity": "Low" }