Inputs dense_features
or example_state_data
not of rank 2 will trigger a CHECK
fail in SdcaOptimizer
.
import tensorflow as tf
tf.raw_ops.SdcaOptimizer(
sparse_example_indices=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.int64, maxval=100)],
sparse_feature_indices=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.int64, maxval=100)],
sparse_feature_values=8 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100)],
dense_features=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100)],
example_weights=tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100),
example_labels=tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100),
sparse_indices=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.int64, maxval=100)],
sparse_weights=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100)],
dense_weights=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100)],
example_state_data=tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100),
loss_type="squared_loss",
l1=0.0,
l2=0.0,
num_loss_partitions=1,
num_inner_iterations=1,
adaptative=False,)
We have patched the issue in GitHub commit 80ff197d03db2a70c6a111f97dcdacad1b0babfa.
The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.
This vulnerability has been reported by Zizhuang Deng of IIE, UCAS
{ "nvd_published_at": "2022-11-18T22:15:00Z", "cwe_ids": [ "CWE-20", "CWE-617" ], "severity": "MODERATE", "github_reviewed": true, "github_reviewed_at": "2022-11-21T21:54:26Z" }