GHSA-9w2p-5mgw-p94c

Suggest an improvement
Source
https://github.com/advisories/GHSA-9w2p-5mgw-p94c
Import Source
https://github.com/github/advisory-database/blob/main/advisories/github-reviewed/2021/08/GHSA-9w2p-5mgw-p94c/GHSA-9w2p-5mgw-p94c.json
JSON Data
https://api.test.osv.dev/v1/vulns/GHSA-9w2p-5mgw-p94c
Aliases
Related
Published
2021-08-25T14:43:37Z
Modified
2024-11-13T16:25:26.341592Z
Severity
  • 5.5 (Medium) CVSS_V3 - CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H CVSS Calculator
  • 5.7 (Medium) CVSS_V4 - CVSS:4.0/AV:L/AC:L/AT:P/PR:L/UI:N/VC:N/VI:N/VA:H/SC:N/SI:N/SA:N CVSS Calculator
Summary
Integer overflow due to conversion to unsigned
Details

Impact

The implementation of tf.raw_ops.QuantizeAndDequantizeV4Grad is vulnerable to an integer overflow issue caused by converting a signed integer value to an unsigned one and then allocating memory based on this value.

import tensorflow as tf

tf.raw_ops.QuantizeAndDequantizeV4Grad(
  gradients=[1.0,2.0],
  input=[1.0,1.0],
  input_min=[0.0],
  input_max=[10.0],
  axis=-100)

The implementation uses the axis value as the size argument to absl::InlinedVector constructor. But, the constructor uses an unsigned type for the argument, so the implicit conversion transforms the negative value to a large integer.

Patches

We have patched the issue in GitHub commit 96f364a1ca3009f98980021c4b32be5fdcca33a1.

The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, and TensorFlow 2.4.3, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by members of the Aivul Team from Qihoo 360.

Database specific
{
    "nvd_published_at": "2021-08-12T21:15:00Z",
    "cwe_ids": [
        "CWE-681"
    ],
    "severity": "MODERATE",
    "github_reviewed": true,
    "github_reviewed_at": "2021-08-23T19:20:13Z"
}
References

Affected packages

PyPI / tensorflow

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
0Unknown introduced version / All previous versions are affected
Fixed
2.4.3

Affected versions

0.*

0.12.0
0.12.1

1.*

1.0.0
1.0.1
1.1.0
1.2.0
1.2.1
1.3.0
1.4.0
1.4.1
1.5.0
1.5.1
1.6.0
1.7.0
1.7.1
1.8.0
1.9.0
1.10.0
1.10.1
1.11.0
1.12.0
1.12.2
1.12.3
1.13.1
1.13.2
1.14.0
1.15.0
1.15.2
1.15.3
1.15.4
1.15.5

2.*

2.0.0
2.0.1
2.0.2
2.0.3
2.0.4
2.1.0
2.1.1
2.1.2
2.1.3
2.1.4
2.2.0
2.2.1
2.2.2
2.2.3
2.3.0
2.3.1
2.3.2
2.3.3
2.3.4
2.4.0
2.4.1
2.4.2

PyPI / tensorflow

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.5.0
Fixed
2.5.1

Affected versions

2.*

2.5.0

PyPI / tensorflow-cpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
0Unknown introduced version / All previous versions are affected
Fixed
2.4.3

Affected versions

1.*

1.15.0

2.*

2.1.0
2.1.1
2.1.2
2.1.3
2.1.4
2.2.0
2.2.1
2.2.2
2.2.3
2.3.0
2.3.1
2.3.2
2.3.3
2.3.4
2.4.0
2.4.1
2.4.2

PyPI / tensorflow-cpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.5.0
Fixed
2.5.1

Affected versions

2.*

2.5.0

PyPI / tensorflow-gpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
0Unknown introduced version / All previous versions are affected
Fixed
2.4.3

Affected versions

0.*

0.12.0
0.12.1

1.*

1.0.0
1.0.1
1.1.0
1.2.0
1.2.1
1.3.0
1.4.0
1.4.1
1.5.0
1.5.1
1.6.0
1.7.0
1.7.1
1.8.0
1.9.0
1.10.0
1.10.1
1.11.0
1.12.0
1.12.2
1.12.3
1.13.1
1.13.2
1.14.0
1.15.0
1.15.2
1.15.3
1.15.4
1.15.5

2.*

2.0.0
2.0.1
2.0.2
2.0.3
2.0.4
2.1.0
2.1.1
2.1.2
2.1.3
2.1.4
2.2.0
2.2.1
2.2.2
2.2.3
2.3.0
2.3.1
2.3.2
2.3.3
2.3.4
2.4.0
2.4.1
2.4.2

PyPI / tensorflow-gpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.5.0
Fixed
2.5.1

Affected versions

2.*

2.5.0