GHSA-h6fg-mjxg-hqq4

Suggest an improvement
Source
https://github.com/advisories/GHSA-h6fg-mjxg-hqq4
Import Source
https://github.com/github/advisory-database/blob/main/advisories/github-reviewed/2020/09/GHSA-h6fg-mjxg-hqq4/GHSA-h6fg-mjxg-hqq4.json
JSON Data
https://api.osv.dev/v1/vulns/GHSA-h6fg-mjxg-hqq4
Aliases
Published
2020-09-25T18:28:35Z
Modified
2024-10-28T21:30:53.804581Z
Severity
  • 9.0 (Critical) CVSS_V3 - CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:H/I:H/A:H CVSS Calculator
  • 7.1 (High) CVSS_V4 - CVSS:4.0/AV:N/AC:L/AT:P/PR:N/UI:N/VC:N/VI:N/VA:N/SC:H/SI:H/SA:H CVSS Calculator
Summary
Integer truncation in Shard API usage
Details

Impact

The Shard API in TensorFlow expects the last argument to be a function taking two int64 (i.e., long long) arguments: https://github.com/tensorflow/tensorflow/blob/0e68f4d3295eb0281a517c3662f6698992b7b2cf/tensorflow/core/util/work_sharder.h#L59-L60

However, there are several places in TensorFlow where a lambda taking int or int32 arguments is being used: https://github.com/tensorflow/tensorflow/blob/0e68f4d3295eb0281a517c3662f6698992b7b2cf/tensorflow/core/kernels/randomop.cc#L204-L205 https://github.com/tensorflow/tensorflow/blob/0e68f4d3295eb0281a517c3662f6698992b7b2cf/tensorflow/core/kernels/randomop.cc#L317-L318

In these cases, if the amount of work to be parallelized is large enough, integer truncation occurs. Depending on how the two arguments of the lambda are used, this can result in segfaults, read/write outside of heap allocated arrays, stack overflows, or data corruption.

Patches

We have patched the issue in 27b417360cbd671ef55915e4bb6bb06af8b8a832 and ca8c013b5e97b1373b3bb1c97ea655e69f31a575. We will release patch releases for all versions between 1.15 and 2.3.

We recommend users to upgrade to TensorFlow 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by members of the Aivul Team from Qihoo 360.

References

Affected packages

PyPI / tensorflow

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
0Unknown introduced version / All previous versions are affected
Fixed
1.15.4

Affected versions

0.*

0.12.0
0.12.1

1.*

1.0.0
1.0.1
1.1.0
1.2.0
1.2.1
1.3.0
1.4.0
1.4.1
1.5.0
1.5.1
1.6.0
1.7.0
1.7.1
1.8.0
1.9.0
1.10.0
1.10.1
1.11.0
1.12.0
1.12.2
1.12.3
1.13.1
1.13.2
1.14.0
1.15.0
1.15.2
1.15.3

PyPI / tensorflow

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.0.0
Fixed
2.0.3

Affected versions

2.*

2.0.0
2.0.1
2.0.2

PyPI / tensorflow

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.1.0
Fixed
2.1.2

Affected versions

2.*

2.1.0
2.1.1

PyPI / tensorflow

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.2.0
Fixed
2.2.1

Affected versions

2.*

2.2.0

PyPI / tensorflow

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.3.0
Fixed
2.3.1

Affected versions

2.*

2.3.0

PyPI / tensorflow-cpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
0Unknown introduced version / All previous versions are affected
Fixed
1.15.4

Affected versions

1.*

1.15.0

PyPI / tensorflow-cpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.0.0
Fixed
2.0.3

PyPI / tensorflow-cpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.1.0
Fixed
2.1.2

Affected versions

2.*

2.1.0
2.1.1

PyPI / tensorflow-cpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.2.0
Fixed
2.2.1

Affected versions

2.*

2.2.0

PyPI / tensorflow-cpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.3.0
Fixed
2.3.1

Affected versions

2.*

2.3.0

PyPI / tensorflow-gpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
0Unknown introduced version / All previous versions are affected
Fixed
1.15.4

Affected versions

0.*

0.12.0
0.12.1

1.*

1.0.0
1.0.1
1.1.0
1.2.0
1.2.1
1.3.0
1.4.0
1.4.1
1.5.0
1.5.1
1.6.0
1.7.0
1.7.1
1.8.0
1.9.0
1.10.0
1.10.1
1.11.0
1.12.0
1.12.2
1.12.3
1.13.1
1.13.2
1.14.0
1.15.0
1.15.2
1.15.3

PyPI / tensorflow-gpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.0.0
Fixed
2.0.3

Affected versions

2.*

2.0.0
2.0.1
2.0.2

PyPI / tensorflow-gpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.1.0
Fixed
2.1.2

Affected versions

2.*

2.1.0
2.1.1

PyPI / tensorflow-gpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.2.0
Fixed
2.2.1

Affected versions

2.*

2.2.0

PyPI / tensorflow-gpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.3.0
Fixed
2.3.1

Affected versions

2.*

2.3.0