GHSA-j86v-p27c-73fm

Suggest an improvement
Source
https://github.com/advisories/GHSA-j86v-p27c-73fm
Import Source
https://github.com/github/advisory-database/blob/main/advisories/github-reviewed/2021/11/GHSA-j86v-p27c-73fm/GHSA-j86v-p27c-73fm.json
JSON Data
https://api.test.osv.dev/v1/vulns/GHSA-j86v-p27c-73fm
Aliases
Related
Published
2021-11-10T19:17:43Z
Modified
2024-11-13T22:01:31.736689Z
Severity
  • 7.8 (High) CVSS_V3 - CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H CVSS Calculator
  • 8.5 (High) CVSS_V4 - CVSS:4.0/AV:L/AC:L/AT:N/PR:L/UI:N/VC:H/VI:H/VA:H/SC:N/SI:N/SA:N CVSS Calculator
Summary
Unitialized access in `EinsumHelper::ParseEquation`
Details

Impact

During execution, EinsumHelper::ParseEquation() is supposed to set the flags in input_has_ellipsis vector and *output_has_ellipsis boolean to indicate whether there is ellipsis in the corresponding inputs and output.

However, the code only changes these flags to true and never assigns false.

for (int i = 0; i < num_inputs; ++i) {
  input_label_counts->at(i).resize(num_labels);
  for (const int label : input_labels->at(i)) {
    if (label != kEllipsisLabel)
      input_label_counts->at(i)[label] += 1;
    else
      input_has_ellipsis->at(i) = true;
  }
}
output_label_counts->resize(num_labels);
for (const int label : *output_labels) {
  if (label != kEllipsisLabel)
    output_label_counts->at(label) += 1;
  else
    *output_has_ellipsis = true;
}

This results in unitialized variable access if callers assume that EinsumHelper::ParseEquation() always sets these flags.

Patches

We have patched the issue in GitHub commit f09caa532b6e1ac8d2aa61b7832c78c5b79300c6.

The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Database specific
{
    "nvd_published_at": "2021-11-05T20:15:00Z",
    "cwe_ids": [
        "CWE-824"
    ],
    "severity": "HIGH",
    "github_reviewed": true,
    "github_reviewed_at": "2021-11-08T22:49:15Z"
}
References

Affected packages

PyPI / tensorflow

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.6.0
Fixed
2.6.1

Affected versions

2.*

2.6.0

PyPI / tensorflow

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.5.0
Fixed
2.5.2

Affected versions

2.*

2.5.0
2.5.1

PyPI / tensorflow

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
0Unknown introduced version / All previous versions are affected
Fixed
2.4.4

Affected versions

0.*

0.12.0
0.12.1

1.*

1.0.0
1.0.1
1.1.0
1.2.0
1.2.1
1.3.0
1.4.0
1.4.1
1.5.0
1.5.1
1.6.0
1.7.0
1.7.1
1.8.0
1.9.0
1.10.0
1.10.1
1.11.0
1.12.0
1.12.2
1.12.3
1.13.1
1.13.2
1.14.0
1.15.0
1.15.2
1.15.3
1.15.4
1.15.5

2.*

2.0.0
2.0.1
2.0.2
2.0.3
2.0.4
2.1.0
2.1.1
2.1.2
2.1.3
2.1.4
2.2.0
2.2.1
2.2.2
2.2.3
2.3.0
2.3.1
2.3.2
2.3.3
2.3.4
2.4.0
2.4.1
2.4.2
2.4.3

PyPI / tensorflow-cpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.6.0
Fixed
2.6.1

Affected versions

2.*

2.6.0

PyPI / tensorflow-cpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.5.0
Fixed
2.5.2

Affected versions

2.*

2.5.0
2.5.1

PyPI / tensorflow-cpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
0Unknown introduced version / All previous versions are affected
Fixed
2.4.4

Affected versions

1.*

1.15.0

2.*

2.1.0
2.1.1
2.1.2
2.1.3
2.1.4
2.2.0
2.2.1
2.2.2
2.2.3
2.3.0
2.3.1
2.3.2
2.3.3
2.3.4
2.4.0
2.4.1
2.4.2
2.4.3

PyPI / tensorflow-gpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.6.0
Fixed
2.6.1

Affected versions

2.*

2.6.0

PyPI / tensorflow-gpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.5.0
Fixed
2.5.2

Affected versions

2.*

2.5.0
2.5.1

PyPI / tensorflow-gpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
0Unknown introduced version / All previous versions are affected
Fixed
2.4.4

Affected versions

0.*

0.12.0
0.12.1

1.*

1.0.0
1.0.1
1.1.0
1.2.0
1.2.1
1.3.0
1.4.0
1.4.1
1.5.0
1.5.1
1.6.0
1.7.0
1.7.1
1.8.0
1.9.0
1.10.0
1.10.1
1.11.0
1.12.0
1.12.2
1.12.3
1.13.1
1.13.2
1.14.0
1.15.0
1.15.2
1.15.3
1.15.4
1.15.5

2.*

2.0.0
2.0.1
2.0.2
2.0.3
2.0.4
2.1.0
2.1.1
2.1.2
2.1.3
2.1.4
2.2.0
2.2.1
2.2.2
2.2.3
2.3.0
2.3.1
2.3.2
2.3.3
2.3.4
2.4.0
2.4.1
2.4.2
2.4.3