GHSA-m34j-p8rj-wjxq

Suggest an improvement
Source
https://github.com/advisories/GHSA-m34j-p8rj-wjxq
Import Source
https://github.com/github/advisory-database/blob/main/advisories/github-reviewed/2021/05/GHSA-m34j-p8rj-wjxq/GHSA-m34j-p8rj-wjxq.json
JSON Data
https://api.test.osv.dev/v1/vulns/GHSA-m34j-p8rj-wjxq
Aliases
Published
2021-05-21T14:23:28Z
Modified
2024-10-30T23:39:56.105188Z
Severity
  • 2.5 (Low) CVSS_V3 - CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L CVSS Calculator
  • 2.0 (Low) CVSS_V4 - CVSS:4.0/AV:L/AC:L/AT:P/PR:L/UI:N/VC:N/VI:N/VA:L/SC:N/SI:N/SA:N CVSS Calculator
Summary
Division by 0 in `QuantizedBiasAdd`
Details

Impact

An attacker can trigger an integer division by zero undefined behavior in tf.raw_ops.QuantizedBiasAdd:

import tensorflow as tf

input_tensor = tf.constant([], shape=[0, 0, 0, 0], dtype=tf.quint8)
bias = tf.constant([], shape=[0], dtype=tf.quint8)
min_input = tf.constant(-10.0, dtype=tf.float32)
max_input = tf.constant(-10.0, dtype=tf.float32)
min_bias = tf.constant(-10.0, dtype=tf.float32)
max_bias = tf.constant(-10.0, dtype=tf.float32)

tf.raw_ops.QuantizedBiasAdd(input=input_tensor, bias=bias, min_input=min_input,
                            max_input=max_input, min_bias=min_bias,
                            max_bias=max_bias, out_type=tf.qint32)

This is because the implementation of the Eigen kernel does a division by the number of elements of the smaller input (based on shape) without checking that this is not zero:

template <typename T1, typename T2, typename T3>
void QuantizedAddUsingEigen(const Eigen::ThreadPoolDevice& device,
                            const Tensor& input, float input_min,
                            float input_max, const Tensor& smaller_input,
                            float smaller_input_min, float smaller_input_max,
                            Tensor* output, float* output_min,
                            float* output_max) {
  ...
  const int64 input_element_count = input.NumElements();
  const int64 smaller_input_element_count = smaller_input.NumElements();
  ...
  bcast[0] = input_element_count / smaller_input_element_count;
  ...
}

This integral division by 0 is undefined behavior.

Patches

We have patched the issue in GitHub commit 67784700869470d65d5f2ef20aeb5e97c31673cb.

The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team.

Database specific
{
    "nvd_published_at": "2021-05-14T20:15:00Z",
    "cwe_ids": [
        "CWE-369"
    ],
    "severity": "LOW",
    "github_reviewed": true,
    "github_reviewed_at": "2021-05-18T21:45:01Z"
}
References

Affected packages

PyPI / tensorflow

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
0Unknown introduced version / All previous versions are affected
Fixed
2.1.4

Affected versions

0.*

0.12.0
0.12.1

1.*

1.0.0
1.0.1
1.1.0
1.2.0
1.2.1
1.3.0
1.4.0
1.4.1
1.5.0
1.5.1
1.6.0
1.7.0
1.7.1
1.8.0
1.9.0
1.10.0
1.10.1
1.11.0
1.12.0
1.12.2
1.12.3
1.13.1
1.13.2
1.14.0
1.15.0
1.15.2
1.15.3
1.15.4
1.15.5

2.*

2.0.0
2.0.1
2.0.2
2.0.3
2.0.4
2.1.0
2.1.1
2.1.2
2.1.3

PyPI / tensorflow

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.2.0
Fixed
2.2.3

Affected versions

2.*

2.2.0
2.2.1
2.2.2

PyPI / tensorflow

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.3.0
Fixed
2.3.3

Affected versions

2.*

2.3.0
2.3.1
2.3.2

PyPI / tensorflow

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.4.0
Fixed
2.4.2

Affected versions

2.*

2.4.0
2.4.1

PyPI / tensorflow-cpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
0Unknown introduced version / All previous versions are affected
Fixed
2.1.4

Affected versions

1.*

1.15.0

2.*

2.1.0
2.1.1
2.1.2
2.1.3

PyPI / tensorflow-cpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.2.0
Fixed
2.2.3

Affected versions

2.*

2.2.0
2.2.1
2.2.2

PyPI / tensorflow-cpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.3.0
Fixed
2.3.3

Affected versions

2.*

2.3.0
2.3.1
2.3.2

PyPI / tensorflow-cpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.4.0
Fixed
2.4.2

Affected versions

2.*

2.4.0
2.4.1

PyPI / tensorflow-gpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
0Unknown introduced version / All previous versions are affected
Fixed
2.1.4

Affected versions

0.*

0.12.0
0.12.1

1.*

1.0.0
1.0.1
1.1.0
1.2.0
1.2.1
1.3.0
1.4.0
1.4.1
1.5.0
1.5.1
1.6.0
1.7.0
1.7.1
1.8.0
1.9.0
1.10.0
1.10.1
1.11.0
1.12.0
1.12.2
1.12.3
1.13.1
1.13.2
1.14.0
1.15.0
1.15.2
1.15.3
1.15.4
1.15.5

2.*

2.0.0
2.0.1
2.0.2
2.0.3
2.0.4
2.1.0
2.1.1
2.1.2
2.1.3

PyPI / tensorflow-gpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.2.0
Fixed
2.2.3

Affected versions

2.*

2.2.0
2.2.1
2.2.2

PyPI / tensorflow-gpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.3.0
Fixed
2.3.3

Affected versions

2.*

2.3.0
2.3.1
2.3.2

PyPI / tensorflow-gpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.4.0
Fixed
2.4.2

Affected versions

2.*

2.4.0
2.4.1