PYSEC-2020-119

See a problem?
Import Source
https://github.com/pypa/advisory-database/blob/main/vulns/tensorflow/PYSEC-2020-119.yaml
JSON Data
https://api.test.osv.dev/v1/vulns/PYSEC-2020-119
Aliases
Published
2020-09-25T19:15:00Z
Modified
2023-12-06T00:45:15.481928Z
Summary
[none]
Details

In Tensorflow version 2.3.0, the SparseCountSparseOutput and RaggedCountSparseOutput implementations don't validate that the weights tensor has the same shape as the data. The check exists for DenseCountSparseOutput, where both tensors are fully specified. In the sparse and ragged count weights are still accessed in parallel with the data. But, since there is no validation, a user passing fewer weights than the values for the tensors can generate a read from outside the bounds of the heap buffer allocated for the weights. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1.

References

Affected packages

PyPI / tensorflow

Package

Affected ranges

Type
GIT
Repo
https://github.com/tensorflow/tensorflow
Events
Introduced
0 Unknown introduced commit / All previous commits are affected
Fixed
Type
ECOSYSTEM
Events
Introduced
0Unknown introduced version / All previous versions are affected
Fixed
2.3.1

Affected versions

0.*

0.12.0rc0
0.12.0rc1
0.12.0
0.12.1

1.*

1.0.0
1.0.1
1.1.0rc0
1.1.0rc1
1.1.0rc2
1.1.0
1.2.0rc0
1.2.0rc1
1.2.0rc2
1.2.0
1.2.1
1.3.0rc0
1.3.0rc1
1.3.0rc2
1.3.0
1.4.0rc0
1.4.0rc1
1.4.0
1.4.1
1.5.0rc0
1.5.0rc1
1.5.0
1.5.1
1.6.0rc0
1.6.0rc1
1.6.0
1.7.0rc0
1.7.0rc1
1.7.0
1.7.1
1.8.0rc0
1.8.0rc1
1.8.0
1.9.0rc0
1.9.0rc1
1.9.0rc2
1.9.0
1.10.0rc0
1.10.0rc1
1.10.0
1.10.1
1.11.0rc0
1.11.0rc1
1.11.0rc2
1.11.0
1.12.0rc0
1.12.0rc1
1.12.0rc2
1.12.0
1.12.2
1.12.3
1.13.0rc0
1.13.0rc1
1.13.0rc2
1.13.1
1.13.2
1.14.0rc0
1.14.0rc1
1.14.0
1.15.0rc0
1.15.0rc1
1.15.0rc2
1.15.0rc3
1.15.0
1.15.2
1.15.3
1.15.4
1.15.5

2.*

2.0.0a0
2.0.0b0
2.0.0b1
2.0.0rc0
2.0.0rc1
2.0.0rc2
2.0.0
2.0.1
2.0.2
2.0.3
2.0.4
2.1.0rc0
2.1.0rc1
2.1.0rc2
2.1.0
2.1.1
2.1.2
2.1.3
2.1.4
2.2.0rc0
2.2.0rc1
2.2.0rc2
2.2.0rc3
2.2.0rc4
2.2.0
2.2.1
2.2.2
2.2.3
2.3.0rc0
2.3.0rc1
2.3.0rc2
2.3.0